MONO LAKE - POSSIBLE FUTURES

M.H. COBBLE

EMERITUS PROFESSOR, NEW MEXICO STATE UNIVERSITY USA

EXTENDED ABSTRACT

Mono Lake is a hypersaline lake, having approximately 7.3 % salt content, and consisting mainly of sodium salts of chlorides, carbonates, and sulfates. The lake is situated in eastern California, USA, and is fed by five mountain streams. The lake has an area of \sim 182 km^2, a volume of \sim 3.22 km^3, and a maximum depth of 48.8 m. The lake had a salinity of 80 gm(s)/L in the year 2002. Additionally Mono Lake is \sim 760,000 years old, one of the oldest in North America. In 1994 in the attempt to reverse the desiccation of the lake, the California State Water Resources Board issued D 1631. It concerned the flows and maintenance of the

future of the lake. [1], [2], [3], [4]

This paper considers three possible futures:

- I. A Salinity Source For PRO, Pressure Retarded Osmosis
- II. Developing A Small Fresh Water Lake
- III. A Lake Complying With The Water Resources Board

In Number I, several forms of the van't Hoff equation are compared for the pressure P, in atmospheres, using the Mono Lake salinity, and the "sea water" salinity.

In Number II, equations for the mass m, gm(t)*af/L, the volume V, af, and

salt content Z, gm(s)*af/L are developed. Then, for assumed initial conditions, solutions are given in a table and a graph.

In Number III, Initial flow conditions are given that will reverse the desiccation and satisfy the 20 year Water Resources Board plan.

M = mass, gm(t)*af/L, V = volume, af,

Z = salt content, gm(s)*af/L, G = salinity, gm(s),

R = density, gm(t)/L, S = % salt, gm(s)/100 gm(t).

I. A Salinity Power Source for PRO, Pressure Retarded Osmosis

A comparison is developed, in atmospheres, between the pressure developed from the salinity of "sea water", and the pressure developed from the salinity of Mono Lake.

Several forms of the van't Hoff equation are used.[5], [6], [7]

Osmotic Pressure

$$^{P} = Ps-Pf$$
 (1)

Where

$$P = MRT = (G/Mw)*RT$$
 (2)

And so

$$Pf = (Gf/Mw)*R'T$$
 (3)

For fresh water, see Section IIb,

Gf= 0.064 gm(s)/LMw ~ 80 gm(s)/mol

So

Pf =
$$(0.064/80)*24.618 = 0.01969$$
 atm ~ 0 (4)

Thus

In the above	^P = Ps	s = P						(5)
In the above $ ^{\text{P} = \text{ osmotic Pressure, atm}} \text{R} ^{\text{P} = 0.08206 L* atm/mol* K} $ $ \text{Ps = P salt solution, atm} \text{T = 300 K} $ $ \text{Pf = P fresh water, atm} \text{RT = 24.618 L* atm/mol} $ $ \text{M = mol/L, molarity} \text{Mw = gm(s)/mol} $ $ \text{P = Pressure, atm} \text{G = gm(s)/L} $ Now from references [8] and [9], for "sea water" $\sim 85\%$ NaCl,								
			Table	I				
	P, bar 27	G M 	a 	i 	Mw - 270		kw	h/m^3
	20.3	35 0.6	0.676	2	58.5	5	203	3 0.563
Where		i = ions per a = coefficie H = column 1 atm = 1.0	ent of acti height of	vity, din	nensionle	ess		
Now conside	P = MR P = iaN	/IR`T	N.4°					(6) (7)
Thus from [8]		R`T = RT`*S	um ivij					(8)
	P = MR`T = (0.6)*24.618 = 14.7708 atm P = iaMR`T = 2*(0.676)*(0,6)*24.618 = 19.970 atm P = iMR`T = 2*(0.6)*24.618 = 29.5416 atm							(6a) (7a) (8a)
From [7] P = 26.66 atm (8b) From the "sea water" analysis, we can see that equations (6a) and (8a) provide the approximate lower and upper marginal boundaries, for the estimation of the pressure P, in atmospheres.								
I. A Salinity Source For PRO, Pressure Retarded Osmosis Now from references [9] and [14]								
m 1.09		Sum mj 2.06	Table 90	II G	1071.5	Rho	300	T(assumed)
Now	M = Rh	no*m/1000 =	gm(t)/L*((mol/kg((t))*(kg(t)/	/gm(t))	= mol/	L (9)
And	Sum m Mt = R	j = mt, Rho*mt/1000	= Sum M	1j = Rho	o* Sum m	ij/1000		(10) (11)
Where		m = mol/10 Rho = gm(t M = mol/L	•		R' = 0.0 T = 300 R'T = 2	K		
	Thus M = Rho*m/1000 = 1071.5*1.09/1000 = 1.16795 mol/L Sum M = Rho*Sum mj = 1075.1*2.06/1000 = 2.2073 mol/L						(12) . (13)	
Thus								
	P = MR'T =1.16795*24.618 = 28.752 atm						(6b)	

Now	P = R'T*Sum Mj = 24.618*2.2073 = 54.339 atm						
Now	Ch = 10.333 m/atm Cw = 0.028146 kwh/m3 atm						
So	H = Ch*P, m kwh/m^3 = Cw*P kwh/af = kwh/m^3*m^3/af=1233.47*Cw*P kwh/y = kwh/af*af/y = 1223.47*Cw*P*V' kw = kwh/y*y/h = 1233.47*Cw*P*V'/8760	(14) (15) (16) (17) (18)					
Thus for $P = 2$	28.752 atm, the lower boundary for Mono Lake, with $V' = 10^5$ af/y,	results					
"	H = 297.094 m kwh/m^3 = 0.80925 kwh/m^3 kwh/af = 998.190 kwh/af kwh/y = 99.819*10^6 kwh/y kw = 11,394 kw	(14a) (15a) (16a) (17a) (18a)					
For P = 54.33	9, the upper boundary for Mono Lake, and V' = 10^5 af/y, results in H = 561.484 m kwh/m^3 = 1.5294 kwh/m^3 kwh/af = 1866.50 kwh/af kwh/y = 188.65*10^6 kwh/y kw = 21,535 kw	(14b) (15b) (16b) (17b) (18b)					
These results Mono Lake.	provide the approximate lower and upper bounds, when G = 90 gr	n(s)/L, for					
•		der to					
Now	P = MR'T = (G/Mw)*R'T	(19)					
Thus Mw = G*R'T/P = 90*24.618/28.752 = 77.0597 gm(s)/mol = mixture molecular weight							
So $P = G*R'T/Mw = G*24.618/77.0597 = 0.31946*G \qquad (21)$ $P(G) = G/3.1302, \text{ atm} \qquad (22)$ In reference [14], for Mono Lake $36 < G < 698, \text{ gm(s)/L}$							
Thus, if G = 3	13.02 gm(s)/L, then P = 100 atm	(23)					

These results indicate the future potential of Mono Lake. The characteristics values of Mono Lake exceed the characteristic values of "sea water", for developing osmotic power, PRO. This should result, in serious consideration, for a Mono Lake PRO site, in the future.

IIa. Developing A Small Fresh Water Lake

W(t) = M(t) - Z(t), gm(w)*af/Lw(t) = R(t) - G(t), gm(w)/L

```
Controlling Equations [10]
Mass, M(t)
                                                                                        (1a)
       M(t) = R(t)*V(t) = Sum Mj(t)
       M'(t) = R(t)*V'(t)+R'(t)*V(t)
                                                                                        (1b)
Where
               R(t) = gm(t)/L, density
               V(t) = af, volume
               M(t) = gm(t)*af/L
Also
       M'(t) = Sum Mj'(t) = Min'(t) + Mra'(t) + Msp'(t) + Mev'(t) + Mse'(t) + Mex'(t) (1c)
Where
               Min'(t) = Rin*Vin'(t)
               Mra''(t) = Ro*Vra'(t)
               Msp'(t) = Rsp*Vsp'(t)
               Mev'(t) = -Ro*Vev'(t)
               Mse'(t) = -R(t)*Vse'(t)
               Mex'(t) = -R(t)*Vex'(t)
Thus
       M'(t) = R(t)*V'(t) + R'(t)*V(t)
               = Rin^*Vin'(t) + Ro^*Vra'(t) + Rsp^*Vsp'(t) - Ro^*Vev'(t)
                                                                                         (2)
               - R(t)*[Vse'(t) + Vex'(t)]
Volume, V(t)
       V'(t) = {Rin*Vin'(t) + Ro*Vra'(t) + Rsp*Vsp'(t) - Ro*Vev'(t) - R'(t)*V(t)}/R(t)
                - Vsp'(t) - Vex'(t),
                                               V(0) = Vo
                                                                                         (3)
Salt, Z(t)
       Z(t)=G(t)*V(t) = Sum Zj(t)
                                                                                          (4)
Where
               G(t) = gm(s)/L, salinity
               Z(t) = gm(s)*af/L
Also
       Z'(t) = Zin'(t)+Zra'(t)+Zsp'(t)+Zev'(t)+Zse'(t)+Zex'(t)
                                                                                         (5)
Where
               Zin'(t) = Gin*Vin'(t)
               Zra'(t) = 0 = Zev'(t)
               Zsp'(t) = Gsp*Vsp'(t)
               Zse'(t) = -G(t)*Vse'(t)
               Zex'(t) = -G(t)*Vex'(t)
Then
       Z'(t) = Gin*Vin'(t) + Gsp*Vsp'(t) - G(t)*[Vse'(t) + Vex'(t)],
                                                                      Z(0) = Zo
                                                                                         (6)
Salinity, G(t)
       G(t) = Z(t)/V(t), gm(s)/L
                                                                                         (7)
Density, R(t)
       R(t) = F(t), gm(t)/L
                                                                                         (8)
%Salt, S(t)
       S(t) = 100*G(t)/R(t), gm(s)/100*gm(t) = %Salt
                                                                                         (9)
Water, W(t)
                                                                                         (10a)
```

(10b)

```
II.b Developing A Small Fresh Water Lake
Volume, V(t)
       V'(t) = \{Rin*Vin'(t)+Ro*Vra'(t)+Rsp*Vsp'(t)-Ro*Vev'(t)-R'(t)*V(t)\}/R(t)
               -Vse'(t)-Vex'(t), V(0) = Vo
                                                                                      (1)
                              Given Parameters, [11]
               Vot = 2.7*10^6 af
                                                     Elev = 6385 ft, surface
               Aot = 45,900 a
                                                     Ro = 1,000 gm(t)/L
               ao = bo = 0.1
                                                     R(t) = Ro + E^*exp(-g^*t)
               Vo = ao*Vot = 0.27*10^6 af
                                                     E = 62 gm(t)/L*v
               Ao = bo*Aot = 4.590 a
                                                             g = 0.5362 1/v
               Hra = 0.7 \text{ ft/y}
                                                     Vin'(t)ot = 152,496 af/y
                                                             Vsp'(t)ot = 48,000 af/v
               Hev = 3.75 \text{ ft/v}
               Go = 78 gm(s)/L
                                                     Vse'(t)ot = 34,000 af/y
                          R'(t) = -g*E*exp(-g*t) gm(t)/L*y
If V'(t) = 0, V(t) = Vo, A(V) = Ao, Ro \sim Rin \sim Rsp, then
       Vex'(t) = [Ro/R(t)]^*[Vin'(t)+Vra'(t)+Vsp'(t)-Vev'(t)-R'(t)*V(t)/Ro] - Vse'(t)
                                                                                       (2)
                      V(0) = Vo
Where
                      Vin'(t) = Vin'(t)ot = 152,496 af/y = Vin'
                      Vra'(t) = bo*Hra*Ao=0.1*0.7*45,900 = 3,213 af/y = Vra'
                      Vsp'(t) = bo*Vsp'(t)ot = 0.1*48,000 = 4,800 af/y = Vsp'
                      Vev'(t) = bo*Hev*Ao = 0.1*3.75*45,900 = 17,212.5 af/y = Vev'
                      Vse'(t) = bo*Vse'(t)ot = 0.1*34,000 = 3,400 af/y = Vse'
                      R'(t)*Vo/Ro = -g*E*exp(-g*t)*Vo/Ro = -0.5362*62*exp(-G*t)/1000
                                    = -8,9875.9*E*exp(-g*t) af/y
Thus
       Vex'(t) = [143,296.5 + 8975.9*exp(-g*t)]/[1.000 + 0.062*exp(-g*t)] - 3,400
                                                                                       (3)
Where
               Vex'(0) = 139,296.5 af/y
               Vex'(inf) = 139,896.5 af/y
Also
       Vex'(t) + Vse'(t) = [143,296 + 8,975.9*exp(-g*t)]/[1.000 + 0.062*exp(-g*t)]
                                                                                      (4)
Salt, Z(t)
       Z(t) = G(t)*V(t) = Sum Zn(t)
                                                                                      (5a)
       Z'(t) = Zin'(t) + Zra'(t) + Zsp'(t) + Zev'(t) + Zse'(t) + Zex'(t)
                                                                                      (5b)
                              Given Parameters
               Gin = 0.064 gm(s)/L
                                                     Gsp = Gin gm(s)/L
               Gse(t) = G(t) gm(s)/L
                                                      Gex(t) = G(t) gm(s)/L
               Gra = 0
                                                             Gev = 0
               Go = 78 gm(s)/L
                                                     Zo = Go*Vo
Now
                      Zin'(t) = Gin*Vin = 0.064*152496 = 8.759.9 gm(s)*af/L(v)
                      Zra'(t) = 0 = Zev'(t)
                      Zsp(t) = Gsp*Vsp'= 0.064*4800 = 307.2 gm(s)*af/L*y
                       Zse'(t) = -G(t)*Vse'(t) = -Z(t)*3300/V(t)
                              = -0.0121592 *Z(t) gm(s)*af/L*y
                      Zex'(t) = -G(t)*Vex'(t) gm(s)*af/L*y
So
       Z'(t) = Gin*Vin' + Gsp*Vsp'- G(t)*[Vse'(t) + Vex'(t)],
                                                               Z(0) = Z_0
                                                                                       (6)
```

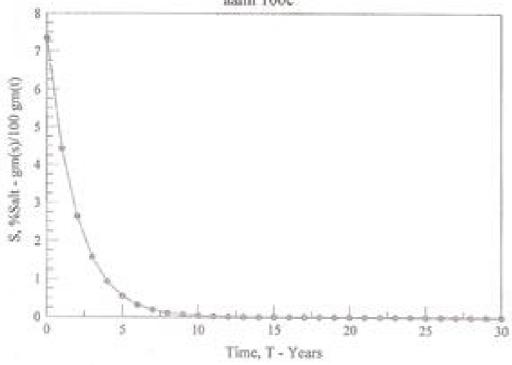
Ilb. Developing A Small Fresh Water Lake

Thus Z'(t) = 10,066.9 + [0.530727 + 0.033244*exp(-g*t)]*Z(t)/[1.000 + 0.062*exp(-g*t)] $Z(0) = Z_0 = 21.06*10^6 gm(s)*af/L$ (7) A numerical solution to equation (7) is given in Table IV, in the following page. Now Z(t) = gm(s)*af/L(7a) and $gm(s)*af/L*(L/m^3)*(m^3/af) = gm(s) = (L/m^3)*(m^3/af)*Z(t)$ (7b) Thus $1.23347*10^6*Z(t) = gm(s)$ (7c)Salinity, G(t) $G(t) = Z(t)/V(t) = Z(t)/Vo = Z(t)/(0.27*10^6) gm(s)/L$ (8) So G(t) = 78*exp(-g*t) + 0.0703*[1 - exp(-g*t)] gm(s)/L(9)G(0) = 78 gm(s)/LG(inf) = 0.0703 gm(s)/Lg = 0.5362 1/yDensity, R(t) R(t) = 1000 + 62*exp(-g*t) gm(t)/L(10)R(0) = 1062 gm(t)/LR(inf) = 1000 gm(t)/L%Salt, S(t) S(t) = gm(s)/L*L/gm(t)*gm(t)/100gm(t) %Salt(11a) S(t) = 100*G(t)/R(t) %Salt (11b)S(t) = 100*[78*exp(-g*t) + 0.0703*(1 - exp(-g*t))]/[1.000 + 62*exp(-g*t)](11c) S(0) = 7.345 % SaltS(inf) = 0.00703 % SaltWater, W(t) W(t) = M(t) - Z(t) = w(t)*V(t) gm(w)*af/L(12)

So

$$w(t) = R(t) - G(t) gm(w)/L$$
(13)

$$w(t) = 999.9297-15.9297*exp(-g*t) gm(w)/L$$
 (14)


w(0) = 984 gm(w)/L

w(inf) = 999.9297 gm(w)/L

The solutions for G(t), R(t), S(t) and w(t) are also shown in Table IV.

	Shirt A			an Chapter			100
646	Tarret	District.	Special.	Report Of	S, Sant	magnification.	Training Pa
200	8-1000000	31,8000	79.0000	1002,0000	7,3466	364,0000	
	1,000000	12,3017	+0.4559	1000.0107	4.4893	989,8508	
٠,	3.7000phe	1 (004):	27,7104	1001,2489	3,4494	354,5454	
4	8.300000	4,285	56,0007	1013,5460	1,8700	196,6354	
٠,	4.000000	2,6000	9.3409	1967,0459	8.9003	897,0739	
٠.	1.000000	3,600	0.0000	PONULTER	8.869	999.2758	
F	8.000000	0.5000	3,3960	10000,0004	6.3067	999,2434	
۲.	1.800000	9,000	10,0479	9941,4940	0.0964	399,6000	
	1,700000	4.5080	9,1450	10000-00300	0.0000	100,010	
100	1,500000	9,5967	6.7384	10000.0136	0.0798	100,7973	
111	15.500000	0.5030	0.4960	10000.0018	8,6494	944,8440	
u.	11.000000	4,000	6,3975	10000 4770	9.4097	999.8798	
10	13.0000000	9,0000	0.3000	10000,0000	8.40004	999,9900	
10	11.000000	9.540	0.1000	10000-0010	3,8140	460,010	
18	14.560900	8,8934	0.1104	1000.0100	5,8194	000,0154	
	18.050000	4,500	8,000	1004.6518	6.4007	999,9454	
OF 1	75.0100000	1,000	0.0000	11000-01523	5,6000	249,3357	
	17.5600000	0.000	9,6797	9600-9679	6,0000	999,8079	
	15-3000000	4-5504	0.0000	1000,0040	9,000%	999,8486	
ш.	11.000000	0.0000	0.07300	1000.000	8,4004	100,000	
18	13-110100	0.0000	0.0750	1000.0015	3,4000	999,9390	
10	21.000000	4,010	8.0754	1000,0000	6,0071	999,5000	
10	23.000000	market.	0.0700	11009-11008	0.0021	399,8434	
н.	21,000,000	0.0000	8.0758	9600,0600	8,8004	969,34557	
11	24.5600000	9,000	9.0500	15000,0000	8,000%	100,007	
	18.460000	8,5000	0.0754	10040-0041	8,0076	899,6697	
W.	28.000000	9,000	0.0750	10000.0001	6,0079	940.6017	
	27,0600000	4,5000	8,0750	H000-0000	6,000	999,8017	
0	31.510000	0.0000	0.0750	10000-01000	8.60%	999.0007	
10	29.000000	0.0000	6,6750	HI000 010000	8.0076	996,600	
10.	20.000000	0.0100	8,0750	16000.0000	8.0000	999,8887	

Figure 1 Mono Lake S, % Salt, vs Time aaml 100c

III. A Lake Complying With The Water Resources Board From references [12] and [13],

Table V								
Year	Area, a	Volume, af	Salinity, gm(s)/L	Density, gm(t)/L				
1999	45,900	2.7*10^6	78	1062				
2019	48,960	3.0*10^6	69.3	1056				
1963	48,739	3.037*10^6	69	1056				

Historically, as late as 1963, the Water Board requirements for the future were met in 1963 and for many previous years. [11] Using the conditions listed for the year 1999, in the equations for volume, salt, salinity, density and water content, as developed in Section IIb, and using the conditions listed in the parameters given below:

Parameters

```
Vin'(t) = 144943 \text{ af/y} Vra'(t) = Hra*A(V)

Vsp'(t) = 48,000 \text{ af/y} Vev'(t) = Hev*A(V)

Vsp'(t) = 34,000*A(V)/Ao Vex'(t) = 0

Vsp'(t) = 34,000*A(V)/Ao Vex'(t) = 0

Vsp'(t) = 3.75 \text{ ft/y}
```

The results are close to the values listed for 2019.

CONCLUSION

The three possible futures for Mono Lake have been considered herein. It is seen that the Mono Lake PRO prospects are greater than the "sea water" PRO prospects. Additionally a small fresh water lake is possible in about 10 years. Satisfying the State Water Resources Board conditions was possible in the near past, and a possible future result is suggested.

Nomenclature

```
af = acre-feet
A= area, acre, a
ao = volume coefficient, dimensionless Ao, Aot = starting areas, a
bo = area coefficient, dimensionless
                                         Ch = water column factor, m/atm
Cw = work/(m^3*atm)
                                     E = density coefficient, gm(t)/L*atm
G = salinity, gm(s)/L
                                     H = water column height, m
Hev = evaporation factor, ft/y
                                     Hra = rain factor, ft/y
i = ions/molecule, dimensionless
                                     L = liter
M = molarity, mol/L
                                     M(t) = gm(t)*af/L
m = molality, mol/kg(t)
                                     P = pressure, atm
^P = Osmotic pressure, atm
                                     Pf = P fresh water, atm
Ps = P salt solution, atm
                                          R = R(t), density, gm(t)/L
R' = Universal Gas Constant,
                                             S = \% salt, gm(s)/100gm(t)
        t = time, v
                                             V = volume acre-feet, af
               V' = flow rate, af/v
                                                    Vo = initial volume, af
W = water mass, gm(w)*af/L
                                     w = gm(w)/L
                      Z = \text{salt}, \text{gm(s)*af/L}
                      Subscripts
                      in = in(flow)
                      ra = rain
                      sp = spring
                      ev = evaporation
                      se = seepage
                      ex = out(flow)
```

ot = original

REFERENCES

1. GNF- Data Mono Lake

http://www.globealnature.org/docs/02_vorlag.asp?id=13905&domid=1011&sp=E&addlast...

2. Mono Lake

http://wiki-trust.ese.ucse.edu/index.php/Mono Lake

3. Statistics, The Measurement of the Mono Basin http://monolake.org/naturalhistory/stats.htm

4. Lecture 14: Mono Lake: A Case Study

http://members.a;/Tenaya21/Ecology/Lecturenotes/lec14html

5. Osmotic Pressure Calculation http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/ospcal.html

6. Osmosis Equation

http://dbhs.wvusd.k12.ca.us/webdocs/Solutions/Osmosis-Equation.html

- 7. Reverse Osmosis Membrane Design Equations Formulas Calculator-van't Hoff osmotic http://www..ajdesigner.com/phpreverseoso/reverse osmosis_equation_hoff_osmotic_..
- 8. Osmotic Pressure

http://www.bellona.no/en/energy/report 3-1999/11203.html

- 9. ISENTROPIC DESALINATION (at minimal energy cost) OF SEA WATER http://mshades.free.fr/isentropiques/desalination.html
- 10. AEM Applied and Environmental Microbiology http://aem.asm .org/cgi/content/full/72/10/6514/T1
- 11. Cobble M. H. "Qattara Depression-A New Salt Lake", 10th International Conference on Salt Lake Research & Friends of Great Salt Lake Issues Forum, May 11-16, 2008, Salt Lake City
- 12. Hydrology Summary: Guide To Water Flow In The Mono Basin http://www.wsu.edu/MFB.html
- 13. Statistics The Measurements of the Mono Basin http://www.monolake.org/naturalhistory/stats.htm
- 14. Mono Lake Levels 1850-Present

http://www.monobasinresearcg.org/data/levelyearly.htm

15. Bathymetry of Mono Lake

http://www.monobasinresearch.com/images/mbeir/daooendix/tablea-1.pdf