## Biotechnological potential of solar salt works: focus on Squarebop I bacteriorhodopsin

## Angela Corcelli

Department of Basic Medical Sciences, Neurosciences and Sensory Organs. University of Bari "Aldo Moro", Bari, Italy.

p.za G. Cesare, 70124 Bari, Italy. E-mail address: angela.corcelli@uniba.it.

The biomass of the hypersaline water of coastal saltern crystallizer ponds is constituted by red extremely halophilic microorganisms, rich of carotenoid derivatives, and is generally considered a renewable source of valuable bio-products [1-5].

Most of extremely halophilic microorganisms inhabiting the hypersaline saltern ponds belong to the Archaea domain.

Extremely halophilic archaea offer a multitude of actual or potential biotechnological applications, containing in their cells interesting metabolites, such as osmotically active substances (so-called compatible solutes), exopolysaccharides, special membrane lipids, proteins and enzymes.

For example, the compatible solutes play the role of maintaining a positive water balance in the cell and are compatible with the cellular metabolism in high intracellular concentration. These compatible solutes have been found to be excellent stabilizers for biomolecules [6-8]. Ectoine and its derivatives have been used as moisturizers in cosmetics [9] and the exopolysaccharide mannosylglycerate has showed a very high stabilizing effect on several enzymes subjected to heating or freeze-drying [10].

Among extremely halophilic Archaea, *Halobacterium salinarum* has been intensively studied in the course of the last four decades because it expresses the photo-activated membrane protein bacteriorhodopsin [11], which is an analogue of the rhodopsin of animal eye. Bacteriorhodopsin is a photo-activated proton pump, generating a proton gradient which is used by the organism to synthesize adenosine triphosphate; in brief, bacteriorhodopsin is used by the bacterium to directly convert sunlight into chemical energy. Due to its high thermal and photochemical stability, bacteriorhodopsin is considered a promising biological material for photonic device applications, such as holography, spatial light modulators, artificial retina, volumetric and associative optical memories.

Recently we have considered the possibility to use renewable resources of coastal salterns as starting material for the production of bacteriorhodopsin and we showed that, by starting from the concentrated biomass solubilized in detergent, we can collect pure fractions of a bacteriorhodopsin homologue after one-step affinity

chromatography (12). A microfiltration process has been designed to concentrate saltern biomass as starting material to isolate pure bacteriorhodopsin.

As regards the nature of the bacteriorhodopsin homologue isolated from the concentrated biomass of the saltern of Margherita di Savoia (Italy), we have been able to show that it corresponds to Squarebop I protein, the light-activated proton pump of the square halophilic archaeon *Haloquadratum walsbyi* [13-14]. No evidence for the presence of other bacteriorhodopsin-like proteins, such as archaerhodopsins [15-17] and cruxrhodopsins [18,19] was found in the environmental sample analyzed in the present study.

It is indeed well known that mature saturated brine (crystallizers) communities are largely dominated by these square halophilic microorganisms [20]. On other hand the peculiar morphology of *Haloquadratum walsbyi* (square flattened cells of 2–5  $\mu m$  sides) could favor its enrichment by microfiltration; smaller rod and spiral-shaped cells might in part pass through a 0.2  $\mu m$  pore size filter, while the square-shaped cells are mostly retained.

Environmental PCR and cloning techniques retrieved the genes encoding for the bacteriorhodopsin of *Haloquadratum walsbyi* in different saltern ponds of Alicante, in Spain , while similar metagenomic studies of the saltern of Margherita di Savoia, in Italy, are not yet available. Information on microorganisms present in that saltern community of brines has been obtained by lipidomic studies [21-22].

Interestingly, the lipid pattern of concentrated biomass showed lipid components not degraded after the long concentration process; in particular the lipid profile of concentrated biomass is very similar to that present in the biomass before the microfiltration process and to that of the membranes isolated from *Haloquadratum walsbyi* laboratory cultures also, as expected considering the abundance of this archaeon in the crystallizer ponds (23). Reported biochemical data clearly show that bacteriorhodopsin can be isolated from the concentrated biomass of salterns with its *annulus* of phospholipids and glycolipids; it is well known that the association with specific lipids is crucial for the functioning of an integral membrane protein. Finally the assay used to test the functionality of isolated and purified Squarebop I bacteriorhodopsin revealed that the final product of the concentrated biomass still retains its photoactivity; the photocycle of saltern bacteriorhodopsin is very similar to that of *Haloquadratum walsbyi* Squarebop I bacteriorhodopsin [13].

In conclusion, it is possible to concentrate saltern biomass by using a bioreactor; the final mud still contains many valuable biochemical components of cells of extremely halophilic organisms, similar to those isolated from fresh cell cultures. Despite the fact that the red water processing is quite long, we have shown that the functional Squarebop I bacteriorhodopsin and not degraded archaeal lipids are still present in the concentrated biomaterials and can be extracted at a reasonable yield.

## REFERENCES

- 1. Rodriguez-Valera F., Biotechnological potential of halobacteria, in: Danson M.J., Hough D.W., Lund G.G. (Eds.), The Archaebacteria: Biochemistry and biotechnology. Biochemical Society Symposium no. 58, Biochemical Society, High Holburn, London (1992) 135-147.
- 2. Ventosa A., Nieto J.J., Biotechnological applications and potentialities of halophilic microorganisms, World J. Microbiol. Biotechnol. 11 (1995) 85-94.
- 3. Oren, Diversity of halophilic microorganisms, environment, phylogeny, physiology and applications, J. Ind. Microbiol. Biotechnol. 28 (2002) 56-63.
- 4. Schiraldi, Giuliano M., De Rosa M., Perspectives on biotechnological applications of archaea, Archaea. 1 (2002) 75-86.
- 5. Oren, Industrial and environmental applications of halophilic microorganisms, Environ. Technol. 31 (2010) 825-834.
- 6. da Costa M.S., Santos H., Galinski E.A., An overview of the role and diversity of compatible solutes in Bacteria and Archaea, Adv. Biochem. Eng. Biotechnol. 61 (1998) 117–153.
- 7. Welsh D.T., Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate, FEMS Microbiol. Rev. 24 (2000) 263-290.
- 8. Santos H., da Costa M.S., Organic solutes from thermophiles and hyperthermophiles, Methods Enzymol. 334 (2001) 302-315.
- 9. Montitsche L., Driller H., Galinski E., Ectoine and ectoine derivatives as moisturizers in cosmetics, May 2000, US Patent 060071.
- 10. Lamosa P., Burke A., Peist R., Huber R., Liu M.Y., Silva G., Rodrigues-Pousada R., Le Gall J., Maycock C., Santos H., Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile *Archaeoglobus fulgidus*, Appl. Environ. Microbiol. 66 (2000) 1974–1979.
- 11. Oesterhelt, Stoeckenius W., Rhodopsin-like protein from the purple membrane of *Halobacterium halobium*, Nature 233 (1971) 149-152.
- 12. Lobasso S., Lopalco P., Angelini R., Pollice A., Laera G., Milano F., Agostiano A., Corcelli A. Isolation of Squarebop I bacteriorhodopsin from biomass of coastal salterns. Protein Expr Purif. 2012 Jul, 84(1):73-9.
- 13. Bolhuis H., Palm P., Wende A., Falb M., Rampp M., Rodriguez-Valera F., Pfeiffer F., Oesterhelt D., The genome of the square archaeon *Haloquadratum walsbyi*: life at the limits of water activity, BMC Genomics. 7 (2006) 169-180.
- 14. Lobasso S., Lopalco P., Vitale R., Sublimi Saponetti M., Capitanio G., Mangini V., Milano F., Trotta M., Corcelli A., The light-activated proton pump Bop I of the archaeon *Haloquadratum walsbyi*. Photochem. Photobiol., published online 9 Feb 2012, DOI:10.1111/j.1751-1097.2012.01089.x.
- 15. Mukohata Y., Ihara K., Uegaki K., Miyashita Y., Sugiyama Y., Australian Halobacteria and their retinal-protein ion pumps. Photochem. Photobiol. 54 (1991) 1039-1045.

- 16. Li Q., Sun Q., Zhao W., Wang H., Xu D., Newly isolated archaerhodopsin from a strain of Chinese halobacteria and its proton pumping behavior. Biochim. Biophys. Acta 1466 (2000) 260-266.
- 17. Ming M., Lu M., Balashov S.P., Ebrey T.G., Li Q.G., Ding J.D., pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: Comparison with bacteriorhodopsin, Biophys. J. 90 (2006) 3322-3332.
- 18. Sugiyama Y., Yamada N., Mukohata Y., The light-driven proton pump, cruxrhodopsin-2 in Haloarcula sp. arg-2 (bR+, hR-), and its coupled ATP formation, Biochim. Biophys. Acta 1188 (1994) 287-292.
- 19. Tateno M., Ihara K., Mukohata Y., The novel ion pump rhodopsin from Haloarcula form a family independent from both the bacteriorhodopsin and archaerhodopsin families/tribes, Arch. Biochem. Biophys. 315 (1994) 127-132.
- 20. Anton J., Llobet-Brossa E., Rodriguez-Valera F., Amann R., Fluorescence in situ hybridisation analysis of the prokaryotic community inhabiting crystallizer ponds, Environ. Microbiol. 1 (1999) 517-523
- 21. Lattanzio V.M.T., Corcelli A., Mascolo G., Oren A., Presence of two novel cardiolipins in the halophilic archaeal community in the crystallizer brines from the salterns of Margherita di Savoia (Italy) and Eilat (Israel). Extremophiles. 6 (2002) 437-444.
- 22. Lopalco P., Lobasso S., Baronio M., Angelini R., Corcelli A., Impact of lipidomics on the microbial world of hypersaline environments, in: Ventosa A., Oren A., Ma Y., (Eds.), Halophiles and Hypersaline Environments: Current research and Future Trends, Springer, Heidelberg, 2011, pp. 123-13.
- 23. Lobasso S., Lopalco, G. Mascolo P., A. Corcelli, Lipids of the ultra-thin square halophilic archaeon *Haloquadratum walsbyi*. Archaea 2 (2008) 177-183.